Социальная статистика

Уровень жизни – одна из главнейших социальных категорий. Под уровнем жизни понимается уровень благосостояния населения, потребления материальных благ и услуг и степень удовлетворения целесообразных жизненных потребностей.


Индексация доходов – это установленный законами и другими нормативно-правовыми актами механизм пересчета и изменения денежных доходов населения (зарплаты, пенсий, стипендий) с учетом динамики розничных цен для полной или частичной компенсации потерь в доходах в результате инфляции; одна из форм социальной защиты населения от инфляции.


Уровень бедности – размер дохода, который обеспечивает прожиточный минимум, как правило, рассчитывается либо в виде соотношения со средним доходом в стране, либо методом прямого расчета.

2. Виды средних величин

В статистической обработке материала возникают различные задачи, которые необходимо решать, и поэтому в статистической практике используются различные средние величины. Математическая статистика использует различные средние, такие как: средняя арифметическая; средняя геометрическая; средняя гармоническая; средняя квадратическая.

Для того чтобы применить одну из вышеперечисленных видов средней, необходимо проанализировать изучаемую совокупность, определить материальное содержание изучаемого явления, все это делается на основе выводов, полученных из принципа осмысленности результатов при взвешивании или суммировании.

В изучении средних величин применяются следующие показатели и обозначения.

Признак, по которому находится средняя, называется осредняемым признаком

и обозначается х; величина осредняемого признака у любой единицы статистической совокупности называют индивидуальным его значением,

или вариантами,

и обозначают как x 1 , х 2 , x 3 ,… х п ; частота – это повторяемость индивидуальных значений признака, обозначается буквой f.

Средняя арифметическая

Один из наиболее распространенных видов средней – средняя арифметическая,

которая исчисляется тогда, когда объем ос–редняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

Для вычисления средней арифметической величины сумму всех уровней признака делят на их число. Если некоторые варианты встречаются несколько раз, то сумму

Если некоторые варианты встречаются несколько раз, то сумму уровней признака можно получить умножением каждого уровня на соответствующее число единиц совокупности с последующим сложением полученных произведений, исчисленная таким образом средняя арифметическая называется средней арифметической взвешенной.

Формула средней арифметической взвешенной выглядит следующим образом: гдехi – варианты,

гдехi – варианты,

fi – частоты или веса.

Взвешенная средняя величина должна употребляться во всех случаях, когда варианты имеют различную численность.

Арифметическая средняя как бы распределяет поровну между отдельными объектами общую величину признака, в действительности варьирующуюся у каждого из них.

Вычисление средних величин производят по данным, сгруппированным в виде интервальных рядов распределения, когда варианты признака, из которых исчисляется средняя, представлены в виде интервалов (от – до).

Свойства средней арифметической:

1) средняя арифметическая суммы варьирующих величин равна сумме средних арифметических величин: Если хi = yi+zi, то Данное свойство показывает в каких случаях можно суммировать

Данное свойство показывает в каких случаях можно суммировать средние величины.

2) алгебраическая сумма отклонений индивидуальных значений варьирующего признака от средней равна нулю, так как сумма отклонений в одну сторону погашается суммой отклонений в другую сторону: Это правило демонстрирует, что средняя является

Перейти на страницу: 1 2